Further Maths Revision Paper 5

This paper consists of 5 questions covering CP1, CP2, FP1 and FM1.
(AS Further Maths: Q4 and Q5)
1

Figure 1 shows a section of the graph $r=5 \sin 3 \theta$.
Find the area enclosed by the loop.

2

$$
y=\left(1+x^{4}\right) \sin x
$$

Show that

$$
\frac{\mathrm{d}^{4} y}{\mathrm{~d} x^{4}}=\left(x^{4}-72 x^{2}+25\right) \sin x-16 x\left(x^{2}-6\right) \cos x
$$

3

A car of mass 1200 kg tows another car of mass 800 kg , the frictional resistances being 120 N and 80 N respectively.
If the tow rope has a breaking tension of 2000 N find:
(a) the maximum possible acceleration.
(b) the maximum power the towing car can use at the instant when the speed is $10 \mathrm{~km} / \mathrm{h}$

Given the differential equation

$$
100 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=1+(y-3)^{2}
$$

with conditions $y=4$ when $x=0$ and $y=4$ when $x=1$
Use the approximation

$$
y_{r+1} \approx 2 y_{r}-y_{r-1}+h^{2}\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right)_{r}
$$

with $h=1$ to find the value of y when $x=4$

5

(a) Show that $\alpha=3+2 i$ is a root of $z^{3}-2 z^{2}-11 z+52=0$.
(b) Hence find all the solutions of $z^{3}-2 z^{2}-11 z+52=0$

